极限

XantC

数列极限

定义

\[ \lim_{n\to\infty}a_n=L \]

\[ \iff \forall\epsilon>0, \exists N,\text{s.t.} \;\text{if} \;n>N, \text{then}\;|a_n-L|<\varepsilon \]

极限存在准则

夹逼定理

\[ \exists n_0\in\mathbb{N},\text{s.t.}\; n>n_0, \;x_n\leq y_n\leq z_n, \lim_{n\to\infty}x_n=\lim_{x\to\infty}z_n=a\]

\[ \Rightarrow \lim_{n\to \infty}y_n=a \]

单调有界

\[ 单调有界数列必有极限 \]

柯西极限存在准则

\[ \forall \epsilon >0,\; \exists N\in\mathbb{Z^{*}},\;\text{s.t.}\; m>N,n>N, |x_m-x_n|<\epsilon\]

\[ \iff \lim_{n\to \infty}x_n=a \]

函数极限

定义

\[ \lim_{x\to a}f(x)=L \]

\[ \iff \forall\epsilon>0, \exists\delta, \text{s.t.} \;\text{if} \;0<|x-a|<\delta, \text{then}\;|f(x)-L|<\varepsilon \]

\[ (\delta=\delta(a, \varepsilon)) \]

单边极限

\[ \lim_{x\to a^{+}}f(x)=L \]

\[ \iff \forall\epsilon>0, \exists\delta, \text{s.t.} \;\text{if} \;a<x<a+\delta, \text{then}\;|f(x)-L|<\varepsilon \]

\[ \lim_{x\to a^{-}}f(x)=L \]

\[ \iff \forall\epsilon>0, \exists\delta, \text{s.t.} \;\text{if} \;a-\delta<x<a, \text{then}\;|f(x)-L|<\varepsilon \]

无穷极限

\[ \lim_{x\to a}f(x)=\infty \]

\[ \iff \forall M>0, \exists\delta, \text{s.t.} \;\text{if} \;x\in\mathring{U}(a, \delta), \text{then}\;f(x)>M \]

\[ \lim_{x\to a}f(x)=-\infty \]

\[ \iff \forall N<0, \exists\delta, \text{s.t.}\;\text{if} \;x\in\mathring{U}(a, \delta), \text{then}\;f(x)<N \]

连续性

\[ \lim_{x\to a}f(x)=f(a) \]

\[ \lim_{\Delta x\to 0}\Delta y=0 \]

证正弦连续性

\[ \begin{align*} |\Delta y|&=|\sin(x+\Delta x)-\sin x|\\ &=|2\sin(\frac{\Delta x}{2})\cos(x+\frac{\Delta x}{2})|\\ &\leq |2(\frac{\Delta x}{2})\cdot 1|\\ &=|\Delta x| \end{align*} \]

\[ \Rightarrow 0\leq|\Delta y|\leq |\Delta x| \]

\[ \therefore \lim_{\Delta x\to 0}\Delta y=0 \]

定理

极限存在准则

同数列

局部保号性及推论

\[ \lim_{x\to a}f(x)>0 \Rightarrow f(x)>0 \,(x\in\mathring{U}(a, \delta)) \]

\[ f(x)\geq0\Rightarrow \lim_{x\to a}f(x)\geq0 \]

\[ f(x)\leq g(x) \Rightarrow \lim_{x\to a}f(x)\leq\lim_{x\to a}g(x) \;\bigstar \]

证明保号性

\[ \text{if}\; 0<|x-a|<\delta, \text{then} \;L-\varepsilon<f(x)<L+\varepsilon \]

\[ \varepsilon=L\colon L-\frac{L}{2}<f(x) \]

\[ \Rightarrow f(x)>\frac{L}{2}>0 \]

\[ \therefore f(x)>0\,(x\in\mathring{U}(a,\delta)) \]

夹逼定理

\[ f(x)\leq g(x)\leq h(x),\, \lim_{x\to a}f(x)=\lim_{x\to a}h(x)=L \Rightarrow \lim_{x\to a}g(x)=L \]

证明

\[ \begin{cases} x\in\mathring{U}(a,\delta_1)\Rightarrow L-\varepsilon<f(x)<L+\varepsilon\\ x\in\mathring{U}(a,\delta_2)\Rightarrow L-\varepsilon<h(x)<L+\varepsilon \end{cases} \]

\[ let \;\delta=\min(\delta_1, \delta_2) \]

\[ x\in\mathring{U}(a,\delta)\Rightarrow L-\varepsilon<f(x)\leq g(x)\leq h(x)<L+\varepsilon \]

\[ \Rightarrow L-\varepsilon\leq g(x)\leq L-\varepsilon \]

\[ \therefore \lim_{x\to a}g(x)=L \]

洛必达法则

\[ \lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0 \;\text{or} \lim_{x\to a}f(x)=\lim_{x\to a}g(x)=\infty \]

\[ \exists f^{'}(x),g^{'}(x), \,x\in\mathring{U}(a) \]

\[ \lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f^{'}(x)}{g^{'}(x)} \]

证明

\[ \text{For}\colon f(a)=g(a)=0 \]

\[ \exists \xi \in (x,a)\,\text{or}\,(a,x) \]

\[ \text{s.t.}\, \frac{f^{'}(\xi)}{g^{'}(\xi)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f(x)}{g(x)} \]

\[ x\rightarrow a\Rightarrow \xi \rightarrow a \]

\[ \therefore \lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f^{'}(x)}{g^{'}(x)} \]

\[ \text{For}\colon f(a)=g(a)=\infty \]

\[ \frac{f(x)}{g(x)}=\frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}=\frac{0}{0} \]

\[ \Rightarrow \lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{(\frac{1}{g(x)})^{'}}{(\frac{1}{f(x)})^{'}}=\lim_{x\to a}\frac{g^{'}(x)f^2(x)}{f^{'}(x)g^2(x)} \]

\[ \therefore \lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f^{'}(x)}{g^{'}(x)} \]

计算

运算法则

\[ \lim_{x\to a}[f(x)+g(x)]=\lim_{x\to a}f(x)+\lim_{x\to a}g(x) \tag{1} \]

\[ \lim_{x\to a}[f(x)-g(x)]=\lim_{x\to a}f(x)-\lim_{x\to a}g(x) \tag{2} \]

\[ \lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x) \tag{3} \]

\[ \lim_{x\to a}[f(x)g(x)]=\lim_{x\to a}f(x)\cdot \lim_{x\to a}g(x) \tag{4} \]

\[ \lim_{x\to a}\frac{f(x)}{g(x)}=\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}\;(\lim_{x\to a}g(x)\neq0) \tag{5} \]

\[ \lim_{x\to a}f(g(x))=f(\lim_{x\to a}g(x))=f(u_0) \tag{6} \;(\lim_{u\to u_0}f(u)=f(u_0)) \]

\[ \lim_{x\to a}[f(x)]^n=[\lim_{x\to a}f(x)]^n \tag{7} \]

\[ \lim_{x\to a}\sqrt[n]{f(x)}=\sqrt[n]{\lim_{x\to a}f(x)} \tag{8} \]

\[ \lim_{x\to a}c=c \tag{9} \]

\[ \lim_{x\to a}x=a \tag{10} \]

\[ \lim_{x\to a}x^n=a^n \tag{11} \]

证明加法运算

\[ \lim_{x\to a}[f(x)+g(x)]=\lim_{x\to a}f(x)+\lim_{x\to a}g(x)\colon \]

\[ \lim_{x\to a}f(x)=L,\; \lim_{x\to a}g(x)=M \]

\[ \begin{cases} 0<|x-a|<\delta_1\Rightarrow|f(x)-L|<\frac{\varepsilon}{2} \\ 0<|x-a|<\delta_2\Rightarrow|g(x)-M|<\frac{\varepsilon}{2} \\ \end{cases} \]

\[ let\;\delta=\min(\delta_1,\delta_2) \]

\[ \because 0<|x-a|<\delta \]

\[ \therefore \begin{cases} |f(x)-L|<\frac{\varepsilon}{2}\\ |g(x)-M|<\frac{\varepsilon}{2} \end{cases}\]

\[ \begin{align*} \Rightarrow |f(x)+g(x)-L-M|&\leq|f(x)-L|+|g(x)-M| \\ &<\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\ &=\varepsilon \end{align*} \]

\[ \therefore |f(x)+g(x)-L-M|<\varepsilon \]

\[ \therefore \lim_{x\to a}[f(x)+g(x)]=\lim_{x\to a}f(x)+\lim_{x\to a}g(x) \]

证明复合函数运算

\[ u=g(x), \lim_{x\to a}g(x)=u_0,\lim_{u\to u_0}f(u)=f(u_0) \]

\[ \Rightarrow \lim_{x\to a}f(g(x))=f(\lim_{x\to a}g(x))=f(u_0)\colon \]

\[ \begin{cases} \text{if}\;0<|x-a|<\delta_0, \text{then}\;|g(x)-u_0|<\eta_0 \\ \text{if}\;0<|u-u_0|<\eta_0, \text{then}\;|f(u)-f(u_0)|<\varepsilon_0 \end{cases} \]

\[ \Rightarrow \text{if}\;0<|x-a|<\delta_0, \text{then}\;|f(u)-f(u_0)|<\varepsilon_0 \]

\[ \Rightarrow \lim_{x\to a}f(u)=f(u_0)=f(\lim_{x\to a}g(x)) \]

\[ \therefore \lim_{x\to a}f(g(x))=f(\lim_{x\to a}g(x))=f(u_0) \]

无穷小

\[ x\to 0\colon\] \[\sin x \sim x, \;\tan x \sim x\]

\[ \arcsin x\sim x,\; 1-\cos x\sim \frac{1}{2}x^2 \]

\[ \sqrt[n]{1+x^m}-1\sim \frac{1}{n}x^m \]

未定式极限
分式

\[ \frac{0}{0}=\frac{0^{'}}{0^{'}},\;\frac{\infty}{\infty}=\frac{\infty^{'}}{\infty^{'}} \]

乘式

\[ 0\cdot\infty=\frac{0}{\frac{1}{\infty}}=\frac{\infty}{\frac{1}{0}} \]

减式

\[ \infty-\infty\colon\text{通分} \]

次方

\[ \infty^0=0^0=1^\infty\colon \lim u^v=\mathrm{e}^{\lim v\ln{u}} \]

重要极限

第一类重要极限

\[ \lim_{x\to 0}\frac{\sin x}{x}=1 \]

证明

\[ \sin x<x<\tan x \]

\[ 1<\frac{x}{\sin x}<\frac{1}{\cos x} \]

\[ \therefore \cos x<\frac{\sin x}{x}<1 \]

\[ \begin{align*} \cos x&=1-2\sin^2(\frac{x}{2}) \\ &>1-2(\frac{x}{2})^2 \\ &=1-\frac{x^2}{2} \end{align*}\]

\[ \sin x<\tan x\Rightarrow \cos x<1 \]

\[ \therefore 1-\frac{x^2}{2}<\cos x<1 \]

\[ \Rightarrow \lim_{x\to 0}\cos x=\lim_{x\to 0}(1-\frac{x^2}{2})=\lim_{x\to 0}1=1 \]

\[ \because \cos x<\frac{\sin x}{x}<1 \]

\[ \therefore \lim_{x\to 0}\frac{\sin x}{x}=\lim_{x \to 0}\cos x=\lim_{x\to 0}1=1 \]

第二类重要极限

\[ \lim_{x\to \infty}(1+\frac{1}{x})^x=\mathrm{e} \]

证明

\[ x_n=(1+\frac{1}{n})^n < y_n=(1+\frac{1}{n})^{n+1} \]

\[ (1+\frac{1}{n+1})^{n+1}\geq(\frac{n(\frac{n+1}{n})+1}{n+1})^{n+1}\geq\frac{n+1}{n}\cdot\frac{n+1}{n}\cdots 1=(1+\frac{1}{n})^n \]

\[ \Rightarrow x_n \uparrow \]

\[ \frac{1}{y_n}=(\frac{n}{n+1})^{n+1}\leq(\frac{(n+1)(\frac{n}{n+1})+1}{n+2})^{n+2}=(\frac{n+1}{n+2})^{n+2}=\frac{1}{y_{n+1}} \]

\[ \Rightarrow y_n \downarrow \]

\[ \therefore 2=x_1\leq x_n < y_n \leq y_1=4 \]

\[ \therefore x_n单调有界 \]

\[ \therefore\lim_{n\to \infty}(1+\frac{1}{n})^n=\mathrm{e} \]

\[ \text{对于}x\in \mathbb{R},\,\lim_{x\to \infty}(1+\frac{1}{x})^x\colon \]

\[ \text{let}\;n\leq x<n+1 \]

\[ (1+\frac{1}{n+1})^n<(1+\frac{1}{x})^x<(1+\frac{1}{n})^{n+1} \]

\[ \lim_{n\to \infty}(1+\frac{1}{n+1})^n=\lim_{n\to \infty}\frac{(1+\frac{1}{n+1})^{n+1}}{1+\frac{1}{n+1}}=\mathrm{e} \]

\[ \lim_{x\to\infty}(1+\frac{1}{n})^{n+1}=\lim_{n\to \infty}[(1+\frac{1}{n})^n\cdot(1+\frac{1}{n})]=\mathrm{e} \]

\[ \therefore \lim_{x\to \infty}(1+\frac{1}{x})^x=\mathrm{e} \]